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A B S T R A C T   

During root growth, plasma membrane NADPH oxidase (NOX) and PM H+-ATPase function cooperatively to 
maintain the membrane electrical balance while mediating cell growth through wall relaxation. A threshold 
[Ca+2]cyt and H2O2 mediate the feed-forward loop between these two enzymes in Vigna radiata seedlings. The 
apoplastic superoxide (O2•ˉ) being produced by NOX is subsequently dismutated to H2O2 either spontaneously or 
by the activity of apoplastic Cu/Zn superoxide dismutase (SOD) enzyme. Since SOD utilises apoplastic H+

(extruded from cytosol by PM H+-ATPase) and O2•ˉ as substrates, its functioning is inevitably depending on PM 
H+-ATPase and NOX activities. Further conversion of H2O2 by class III peroxidase (Prx) to hydroxyl radical (•OH) 
is instrumental for wall polysaccharide cleavage and cell wall relaxation. Thus, SOD and Prx activities appear to 
be co-ordinated with the upstream interplay between NOX and PM H+-ATPase in the regulatory network for root 
growth (Majumdar and Kar, 2019, J Plant Physiol 232: 248–256). In the present investigation, possible co- 
regulation among NOX and PM H+-ATPase, at gene expression level, has been studied during root growth of 
V. radiata seedlings using quantitative real-time PCR (qRT-PCR). It is evident that a transcriptional co-regulation 
exists between the two enzymes and inhibition of any one enzyme or removal of its product represses gene 
expression of the other. As observed for their activities, H2O2 and Ca+2 apparently regulate expression of both 
NOX and PM H+-ATPase genes and the probable mechanism is discussed.   

1. Introduction 

Continuous root growth enables plants to cope up with the increasing 
demand of water and nutrients. Although rapid cell division is a pre- 
requisite of root growth, majority of the enhancement in volume is ob
tained from cell elongation/expansion which depends on the extensi
bility property of the cell wall. The irreversible expansion of plant cells 
depends largely on cell wall loosening (Hager, 2003; Cosgrove, 2016a, 
2016b). Plasma membrane (PM) H+-ATPase is an electrogenic proton 
pump and functions as a key component in the process of cellular growth 
in plants. It is responsible, apart from many other functions (e.g. 
building up of turgor pressure), for acidification of apoplast (in an auxin- 
inducible manner) and activation of expansins and enzymes that are 
involved in cell wall loosening (Hager, 2003; Janicka-Russak, 2011; 
Falhof et al., 2016). Indispensible involvement of PM H+-ATPase is well 
reported in root growth (Janicka-Russak, 2011; Janicka-Russak et al., 

2012; Majumdar and Kar, 2018). On the other hand, studies through last 
few decades have identified apoplastic reactive oxygen species (ROS) to 
play pivotal roles in cell wall relaxation process (Liszkay et al., 2004). 
Apoplastic ROS circuit is initiated with NADPH oxidase [NOX; Respi
ratory Burst Oxidase Homologs (RBOH)]-mediated production of su
peroxide (O2•ˉ) by one electron reduction of O2, which is subsequently 
dismutated to hydrogen peroxide (H2O2) either spontaneously or by 
apoplastic Cu/Zn superoxide dismutase (SOD). It is reported that SOD 
utilises both apoplastic H+ (extruded from cytosol by PM H+-ATPase) 
and O2•ˉ as substrates to produce H2O2 thereby being dependent on the 
activities of PM H+-ATPase and NOX (Majumdar and Kar, 2019). Con
version of H2O2 by class III peroxidase (Prx) to hydroxyl radical (•OH) is 
instrumental for non-enzymatic cleavage of wall polysaccharides which 
results in enhancement of plastic extensibility of cell wall (Liszkay et al., 
2004; Cosio and Dunand, 2009; Airianah et al., 2016). 

Interestingly, a putative feed-forward loop between NOX and PM H+- 
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ATPase has recently been identified that integrates the apparent 
involvement of both PM H+-ATPase-induced H+ efflux and NOX- 
generated ROS in the cell wall loosening during root growth (Majum
dar and Kar, 2018). The enzymes’ activities have been found to be 
functionally synchronized during chloroplast avoidance movement too 
(Majumdar and Kar, 2020). Inhibition of either NOX or PM H+-ATPase 
results in reduced activity of the other. Calcium (Ca+2) functions as a 
potent mediator of the loop. Further, H2O2 has been found to promote 
both the enzymes which may be attained either directly or through ac
celeration of Ca+2-entry into the cell across PM facilitating the building 
up of threshold [Ca+2]cyt concentration (Li et al., 2011; Majumdar and 
Kar, 2018). Moreover, the interplay between NOX and PM H+-ATPase 
has been documented to regulate the (downstream) activity of SOD and 
Prx as well, thereby depicting a probable synchronized functioning of 
the four enzymes during root growth (Majumdar and Kar, 2019). 

Based on the harmonized functioning of PM H+-ATPase and NOX, an 
intriguing question arises that whether such reciprocal regulation in
volves the expression of the respective genes too. Reports available in 
this regard are scanty and most of them are inconclusive. In the present 
investigation attempts have been made to recognize and comprehend 
the transcriptional co-regulation between PM H+-ATPase and NOX 
during root growth of Vigna radiata (L.) Wilczek. A working model 
depicting the probable functional mechanism, involving the role of Ca+2 

and other signalling agents, has been proposed. 

2. Materials and methods 

2.1. Plant materials and growth conditions 

Surface sterilized seeds of Vigna radiata (L.) Wilczek were germinated 
for 12 h in dark on moistened Whatman No. 1 filter paper at 30 ± 2 ◦C. 
After germination, the seeds were transferred to different test solutions 
(treatments) or distilled H2O (control) and incubated for 48 h in dark at 
the same temperature range. Roots of the 48 h grown seedlings were 
harvested and utilized for assessment. 

2.2. Total RNA isolation and quantitative real time PCR (qRT-PCR) 

Total RNA was extracted from the root tissues following manufac
turer’s specifications using the RNeasy mini Plant kit (Qiagen). RNA 
yield was determined using NanoDrop Spectrophotometer (Thermo 
Scientific). First-strand cDNA was synthesized with the RevertAid First 
Strand cDNA Synthesis Kit (K1621, Thermo Scientific). Vigna radiata 
gene sequences were obtained from NCBI and gene-specific primers 
were designed or obtained from literature and cDNA were used as 
template in PCR reactions. ChemiDoc XRS+ imaging system (Bio-Rad) 
was used for visualizations of bands and capturing images. Band in
tensities of the agarose gels were measured using ImageJ software. The 
QuantStudio 3 RealTime PCR system (Applied Biosystems) was used to 
perform qRT-PCR. Relative abundance of transcripts of respective genes 
was determined using Actin gene as reference. The transcriptional levels 
of NOX and PM H+-ATPase genes were normalized against Actin and 
analyzed using 2-ΔΔCt method (Livak and Schmittgen, 2001). Among the 
several Vigna radiata mRNA sequences available in NCBI GenBank 

Fig. 1. Analyses of NADPH oxidase gene expression based on semi-quantitative and quantitative Real-time (qRT) PCR in roots of Vigna radiata seedlings. (a) Semi- 
quantitative reverse transcription PCR-derived amplicons of V. radiata NOX and V. radiata Actin genes from CCCP, vanadate-treated and control sets resolved in 1.5% 
agarose gel. (b) Relative band intensities of V. radiata NOX gene under different treatments in agarose gel. (c) Relative band intensities of V. radiata Actin gene under 
different treatments in agarose gel. (d) qRT-PCR analysis of V. radiata NOX gene demonstrating relative expression of the gene in V. radiata roots treated with CCCP 
and Vanadate along with control sets. 

A. Majumdar and R.K. Kar                                                                                                                                                                                                                   



Plant Gene 26 (2021) 100272

3

database, V. radiata PM H+-ATPase 4 (transcript variant X1) and 
V. radiata RBOHC (transcript variant X2) (corresponding to PM H+- 
ATPase and NOX genes, respectively) were selected for experiments in 
the present investigation. The selected mRNAs have conserved analo
gous sequences with Arabidopsis thaliana AHA2 and RBOHC mRNAs, 
respectively. Both AHA2 and RBOHC have been reported to express 
almost exclusively in roots. Details of the sequences (as available in 
NCBI GenBank database) along with the primers used for PCR are 
mentioned below: 

V. radiata Actin [Accession: XM_014658078; Version: 
XM_014658078.2; PREDICTED: Vigna radiata var. radiata actin 
(LOC106771984), transcript variant X1, mRNA; Available from: htt 
ps://www.ncbi.nlm.nih.gov/nuccore/XM_014658078.2]. 

Forward: 5′- CACAGAAGCACCACTCAATCC - 3′. 
Reverse: 5′ - CCATCACCAGAGTCCAGAACA - 3′. 
V. radiata NOX [Accession: XM_014654036, Version: 

XM_014654036.2; PREDICTED: Vigna radiata var. radiata respiratory 
burst oxidase homolog protein C (LOC106768745), transcript variant 
X2, mRNA; Available from: https://www.ncbi.nlm.nih.gov/nucc 
ore/XM_014654036.2]. 

Forward: 5′ – CTAGCCCTGTGGATTGGTGT – 3’. 
Reverse: 5′ – CCTTAGCCAGGTGATGGTGT – 3′. 
V. radiata PM Hþ-ATPase 4 [Accession No.: XM_014645401, 

Version: XM_014645401.2; PREDICTED: Vigna radiata var. radiata 
plasma membrane ATPase 4 (LOC106761834), transcript variant X1, 
mRNA; Available from: https://www.ncbi.nlm.nih.gov/nuccore/XM_01 
4645401.2]. 

Forward: 5′ – AAGAGGCTGCAAGAGAGGAA – 3’. 
Reverse: 5′ – GACCAGGTTCAGTGAGGACAA – 3′. 

3. Results 

To assess whether treatments with PM H+-ATPase inhibitor [sodium 
ortho-vanadate (Na3VO4); 100 μM] and protonophore [carbonyl cya
nide chlorophenylhydrazone (CCCP); 50 μM] affect gene expression of 
V. radiata NOX, semi-quantitative and quantitative real-time PCR (qRT- 
PCR) analyses were performed with total RNA extracted from roots of 2- 
days grown seedlings (Fig. 1). The semi-quantitative PCR derived 
amplicons were resolved in 1.5% agarose gels (Fig. 1a). The level of 
transcript of V. radiata NOX gene was greatly reduced, as indicated by 
the band intensities, under both CCCP [A.U. (expression arbitrary unit) 
0.27] and vanadate (A.U. 0.12) treatments compared to control (A.U. 
1.00) (Fig. 1b). The expression of reference Actin gene was similar under 
the treatments [CCCP: A.U. 0.95; Vanadate: A.U. 1.02] and control set 
(A.U. 1.00) (Fig. 1c). This result was further corroborated by qRT-PCR 
assay, which showed a sharp decline in relative expression of 
V. radiata NOX gene under both the treatments. Thus, the transcript level 
of the gene was much lower in CCCP (A.U. 0.23) and Vanadate (A.U. 
0.29) treated plants relative to the control (A.U. 1.00) plants (Fig. 1d). 
This clearly indicates the involvement of PM H+-ATPase activity and a 
stable cross-PM H+ gradient in regulation of V. radiata NOX gene 
expression. 

Conversely, semi-quantitative PCR analyses were performed to 
determine the effect, if any, of NOX inhibitor [diphenyleneiodonium 

Fig. 2. Analyses of PM H+-ATPase gene expression based on semi-quantitative and quantitative Real-time (qRT) PCR in roots of Vigna radiata seedlings. (a) Semi- 
quantitative reverse transcription PCR derived amplicons of V. radiata PM H+-ATPase 4 and V. radiata Actin genes from DPI, PG-treated and control sets resolved in 
1.5% agarose gel. (b) Relative band intensities of V. radiata PM H+-ATPase 4 gene under different treatments in agarose gel. (c) Relative band intensities of V. radiata 
Actin gene under different treatments in agarose gel. (d) qRT-PCR analysis of V. radiata PM H+-ATPase 4 gene demonstrating relative expression of the gene in 
V. radiata roots treated with DPI and PG along with control sets. 

A. Majumdar and R.K. Kar                                                                                                                                                                                                                   

https://www.ncbi.nlm.nih.gov/nuccore/XM_014658078.2
https://www.ncbi.nlm.nih.gov/nuccore/XM_014658078.2
https://www.ncbi.nlm.nih.gov/nuccore/XM_014654036.2
https://www.ncbi.nlm.nih.gov/nuccore/XM_014654036.2
https://www.ncbi.nlm.nih.gov/nuccore/XM_014645401.2
https://www.ncbi.nlm.nih.gov/nuccore/XM_014645401.2


Plant Gene 26 (2021) 100272

4

chloride (DPI); 10 μM] and ROS scavenger [propyl gallate (PG); 50 μM] 
on V. radiata PM H+-ATPase 4 gene expression (Fig. 2a). Relative band 
intensities (in 1.5% agarose gel) were much lower for the lanes corre
sponding to the treatments [DPI: A.U. 0.1; PG: A.U. 0.19] than the 
control lane [A.U. 1.00] (Fig. 2b). The expression of Actin gene 
remained unchanged under the treatments [DPI: A.U. 1.05; PG: A.U. 
1.15] relative to control set (A.U. 1.00) (Fig. 2c). Validation of the data 
was obtained again from qRT-PCR analyses which confirmed repression 
of V. radiata PM H+-ATPase 4 gene expression under the treatment of 
DPI and PG. Both the treatments restricted transcript levels to much 
lower values [DPI: A.U. 0.26; PG: A.U. 0.37] relative to control [A.U. 
1.00] (Fig. 2d). Thus, inhibition of NOX or scavenging of ROS [being 
produced in a ROS cascade initiated with NOX activity] evidently 
resulted in down regulation of V. radiata PM H+-ATPase 4 gene 
expression. 

4. Discussion 

Being the initiator of apoplastic ROS cascade, NOX plays pivotal 
roles in root growth. While regulation of NOX activity is dependent on 
several factors viz. Ca+2-binding, phosphorylation etc., expression of 
NOX has been reported to be regulated by MAPK (mitogen-activated 
protein kinase) cascades. It has been observed that phosphorylation of 
WRKY transcription factors (large family of zinc-finger type TFs) by 
MAPKs enables the protein to bind to the W-box DNA cis-element (5’- 
TTGACC/T-3′), located in the NOX/RBOHB gene promoter, and results 
in positive regulation of expression of RBOHB gene in Nicotiana ben
thamiana (Yoshioka et al., 2016; Hu et al., 2020). Adachi et al. (2015) 
have reported that silencing of WRKY 7/8/9/11 genes significantly 
reduced RBOHB gene expression and thus impaired “ROS burst” during 
INF1-triggered PTI (pattern-triggered immunity) and R3a/AVR3a- 
triggered ETI (effector-triggered immunity). Interestingly, MAPK cas
cades are ROS-responsive and H2O2 can activate MAPK cascades e.g. 
MPK3, MPK4, MPK6 (Liu and He, 2017) which would promote phos
phorylation (and activation) of WRKY TFs and up-regulation of target 
genes’ expression. Thus, it is evident that H2O2 is involved in regulation 
of NOX expression too. It has recently been reported that during root 
growth, PM H+-ATPase and NOX activities are synchronized and they 
function in a continuous co-ordinated feed-forward loop which enables 
steady production of apoplastic H2O2 by SOD (Majumdar and Kar, 2018, 
2019). The de novo generated apoplastic H2O2 then crosses PM through 
aquaporins (Mubarakshina and Ivanov, 2010; Bienert and Chaumont, 
2014) and functions as a signalling molecule. The apoplastic “ROS 
signal” is transmitted to nucleus via several agents viz. Ca+2, MAPKs and 
different transcription factors (TFs) (Galon et al., 2010; Shapiguzov 
et al., 2012) and essentially results in modulation of gene expression. 
Concomitantly, inhibition of PM H+-ATPase (by Vanadate) and 
quenching of cross-PM H+ gradient (by CCCP) disrupts the NOX-PM H+- 
ATPase feed-forward loop and reduces H2O2 production (Majumdar and 
Kar, 2018). This depletion in H2O2 level inhibits activation of MAPK 
cascade and phosphorylation of WRKY TFs which eventually results into 
down-regulation of NOX expression (Fig. 1a, b, d). Confirmation of the 
hypothesis may be obtained from Dang et al. (2019) where the authors 
have demonstrated existence of a positive feedback loop between H2O2 
accumulation and promotion of WRKY41 gene expression. Moreover, 
overexpression of WRKY41 gene resulted in significant up-regulation of 
NOX (RBOH C/D/E and F) genes. 

On the other hand, expression and activity of PM H+-ATPase are 
tightly regulated by diverse mechanisms which involve participation of 
different signalling agents (Janicka-Russak, 2011; Falhof et al., 2016). 
Phytohormones e.g. auxin have often been found to modulate the en
zyme’s expression during several plant processes (Frías et al., 1996). It 
has already been documented that ROS (especially H2O2) promote 
expression of genes by interacting with transcription factors whereas 
scavenging of ROS stalls gene expression (Foyer and Noctor, 2005; 
Volkov et al., 2006; Liu et al., 2012). Consequently, Janicka-Russak et al. 

(2012) have reported that treatment with exogenous H2O2 significantly 
enhanced the transcript levels of PM H+-ATPase genes (CsHA4, CsHA8 
and CsHA9) in Cucumis sativus roots. In the present study, it has been 
observed that abolition of apoplastic ROS cascade by inhibiting NOX 
(using DPI) and scavenging ROS (by PG) inhibits PM H+-ATPase gene 
expression (Fig. 2a, b, d). This conforms to earlier studies that DPI could 
significantly reduce PM H+-ATPase gene expression even under the 
treatment of NaCl (promotes PM H+-ATPase activity) and sodium 
nitroprusside (SNP; nitric oxide donor, promotes PM H+-ATPase activ
ity) (Zhang et al., 2007). Inhibition of NOX disrupts the NOX-PM H+- 
ATPase feed forward loop resulting in diminution of H2O2 production 
(Majumdar and Kar, 2018) and PG scavenges the available H2O2 alto
gether. Corroborating to earlier reports, the resultant diminished H2O2 
production leads to down regulation of PM H+-ATPase gene expression. 
However, the mechanism of H2O2-induced PM H+-ATPase gene 
expression has not been investigated thoroughly and the question re
mains mostly unanswered. Interestingly, a recent study has identified W- 
box sequence in the promoter region of PM H+-ATPase gene PeHA1 in 
Populus euphratica (Yao et al., 2020). The authors have reported that 
PeHA1 is a target gene of WRKY protein and the gene’s expression was 
activated by binding of WRKY to W-box whereas silencing of PeWRKY 
gene down-regulated PeHA1 expression. As H2O2 activates WRKY TFs by 
phosphorylation through stimulation of MAPK cascade, PM H+-ATPase 
gene expression may also be regulated by H2O2 in a similar manner as 
hypothesized for NOX expression (through MAPK cascades and WRKY 
TFs). 

Ca+2 is intrinsically involved with the regulation of PM H+-ATPase 
and NOX activities (Gilroy et al., 2014; Kurusu et al., 2015; Majumdar 
and Kar, 2018). While Ca+2 regulates PM H+-ATPase activity by phos
phorylating specific amino acids e.g. Thr947, Thr955 through different 
CDPKs (Ca+2-dependent protein kinases), it directly binds to the N-ter
minal EF hand motifs of NOX and activates the enzyme. CDPK- 
dependent phosphorylation is also necessary for NOX stimulation. 
Interestingly, development of threshold [Ca+2]cyt concentration is 
necessary for such regulation and it depends on both the enzymes 
(Michelet and Boutry, 1995; Foreman et al., 2003; Demidchik et al., 
2007). PM H+-ATPase induces apoplastic acidification resulting into 
hyperpolarization of the membrane and activates HACCs (hyperpolar
ization activated calcium channels) that allows Ca+2 entry into the 
cytosol. Similarly, it is also documented that ROS stimulate inward- 
rectifying Ca+2 permeable channels in PM (Demidchik, 2018). Howev
er, apart from its role in activation of enzymes at post-translational 
stage, pivotal roles of Ca+2 in plants’ gene expressions are also being 
revealed increasingly (Liu et al., 2020). Alteration in gene expression 
may be achieved through direct binding of Ca+2-CaM (calmodulin) 
complex to transcription factors or via regulation of CDPKs and phos
phatases in a dose-dependent manner (Kim et al., 2009; Galon et al., 
2010). It has been reported that CaM binds at the conserved N-terminal 
C-motif of WRKY proteins in a Ca+2-dependent manner and activate the 
TFs (Park et al., 2005; Galon et al., 2010; Rushton et al., 2010). Thus, 
Ca+2 apparently regulates expression of both PM H+-ATPase and NOX 
genes. 

. 

5. Conclusion 

A functional feed-forward loop exists between PM H+-ATPase and 
NOX which is mediated by H2O2 and Ca+2 (Janicka-Russak, 2011; Li 
et al., 2011; Majumdar and Kar, 2018). However, apparent modulations 
of activities of both the enzymes are partly derived from altered 
expression of the respective genes (that essentially attune the available 
enzyme proteins). Co-ordinated functioning of PM H+-ATPase and NOX 
produces H2O2 which stimulates expression of both the genes through 
MAPK cascades and WRKY transcription factors. Ca+2 regulates the 
activation of WRKY TFs and thereby influences the expression of PM H+- 
ATPase and NOX genes. However, the establishment of threshold 
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[Ca+2]cyt concentration depends on both the enzymes’ activities. As 
inhibition of any one enzyme or removal of its product down-regulates 
gene expression of the other, it appears to be rational and justifiable to 
hypothesize that expression of NOX and PM H+-ATPase genes are co- 
regulated during root growth of V. radiata (L.) Wilczek seedlings by 
H2O2 and Ca+2 through MAPKs and distinct TFs like WRKY (Fig. 3). 
Further in-depth studies are required to substantiate this proposition. 
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